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Abstract The Zhang–Zhang polynomial (i.e., Clar covering polynomial) of hexag-
onal systems is introduced by H. Zhang and F. Zhang, which can be used to calculate
many important invariants such as the Clar number, the number of Kekulé structures
and the first Herndon number, etc. In this paper, we give out an explicit recurrence
expression for the Zhang–Zhang polynomials of the cyclo-polyphenacenes, and deter-
mine their Clar numbers, numbers of Kekulé structures and their first Herndon num-
bers.

Keywords Zhang–Zhang polynomial · Clar covering polynomial · Kekulé structure ·
Clar number · Herndon number · Cyclo-polyphenacene

1 Introduction

A hexagonal system is a 2-connected plane graph whose every interior face is bounded
by a regular hexagon of side of length one. Since a hexagonal system with perfect
matchings is the skeleton of a benzenoid hydrocarbon molecule, various topologi-
cal properties of hexagonal systems were extensively treated by mathematicians and
chemists. The interested reader may refer to books [1–3].

In the theoretical chemistry of benzenoid hydrocarbons, one of important directions
is Kekulé structures and Kekulé number. Scores of papers report results on the calcu-
lation of Kekulé number, both in the general case and for special classes of benzenoid
systems; for details on this matter see the book [1] and the references quoted therein.
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Another important direction is the diagrammatic approach put forward by Clar [4].
The number of aromatic sextets in (any of the) Clar formulas of a benzenoid system
is said to be its Clar number. It is pointed out in [5] that determining the value of
Clar number in the case of large benzenoid systems may be a rather difficult task.
And counting the number of Clar formulas of large benzenoids is an equally perplex-
ing problem [6–8], and a pertinent algorithm for this purpose was put forward by
Randić and El-Basil [7]. Hosoya and Yamaguchi introduced a significant concept in
Clar theory-the sextet polynomial [9]. In these papers it is known how to compute
Kekulé number, Clar number, the number of Clar formulas and the sextet polynomial,
but each of these theoretical characteristics of a benzenoid molecule would have to
be determined by a separate algorithm. In 1996, the Chinese mathematicians Heping
Zhang and Fuji Zhang introduced a combinatorial polynomial (i.e., the Clar covering
polynomial of hexagonal systems) in the mathematical literature [10–12], from which
Kekulé number, Clar number, the number of Clar formulas and the sextet polynomial,
can be directly deduced, and which can be computed by an easy recursive technique.
Therefore, it is also called Zhang–Zhang polynomial [13] and has become aware of
its numerous chemical applications. An application to S,T-isomers can been found in
[14]. In [11], they established a relation between Zhang–Zhang polynomial and sextet
polynomial of hexagonal systems. In [12], Zhang further studied the relation between
Zhang–Zhang polynomials of hexagonal systems and the chromatic polynomial.

In a series of papers [5,13,15–18], Gutman and his co-workers showed that Zhang–
Zhang polynomial P(w) of benzenoid hydrocarbons is related to resonance energy
(RE), and that ln P(w) and RE are best correlated when w = 1. This indicates that
P(1) could be viewed as a novel structure-descriptor, playing a role analogous to
the Kekulé structure count in Kekulé-structure-based theories. They also showed that
there are some significant differences between the structure-dependencies of Dewar-
type resonance energy (DRE) and topological resonance energy (TRE). In particular,
in the case of benzenoid molecules, DRE and TRE are found to be linearly related to
ln P(0) and ln P(1), respectively. It was shown that there is a remarkable difference
between the Kekulé-and Clar-structure-dependence of the total π -electron energy of
catafusenes and perifusenes (catacondensed and pericondensed benzenoid molecules)
by using the Zhang–Zhang polynomial.

Recently, Gutman and Borouićanin [19] obtained an explicit combinatorial expres-
sion for the Zhang–Zhang polynomial of the multiple linear hexagonal chains Mn;m .
Zhou et al. [20] obtained the Zhang–Zhang polynomials of some hexagonal systems
by constructing Clar covers without alternating hexagons.

After the discovery of carbon nanotube [21], the nonplane compounds with con-
densed benzene rings became an attractive topic for chemists and physicians, since it
is expect that the carbon nanotube as an artificial material has nice electrical conduc-
tivity and strength. Stimulated by this fact, many researchers considered the tubulene
[22–24]. The carbon skeleton of a tubulene is a benzenoid system embedded in a cyl-
inder with two open ends (all its dangling bonds at both ends saturated with hydrogen
atoms). One of the simplest tubulenes is said to be cyclo-polyphenacenes (a wide type
of molecules including prim tubulenes and prim coronenes) which can be considered
as a hexagonal chains embedded around a cylinder.
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For the cyclo-polyphenacenes with small number of hexagons, many results are
obtained by Dobrowolski [25], Hook et al. [26], Choi and Kim [27] and Turker [28]
which could be a useful aid in the broader field of chemistry in the future. Another
approach is to study the cyclo-polyphenacenes by using some invariant. For exam-
ple, Misra and Klein [29] considered the case of cyclo-polyphenacenes with arbitrary
number of hexagons and introduced the invariant combinatorial curvature and studied
its plausible relation to structural stresses, as manifested in thermodynamic stability.
Also, in order to compare the stability of the cyclo-polyphenacenes, Wang et al. [30]
introduced a new quasiodering to rank the cyclo-polyphenacenes with respect to their
number of Clar aromatic sextets.

In this paper, we will consider the Zhang–Zhang polynomial of the cyclo-polyphe-
nacenes. We will give out an explicit recurrence expression for the Zhang–Zhang
polynomial of the cyclo-polyphenacenes, and obtain the Clar number, the number of
Kekulé structures and the first Herndon number.

2 Definitions and basic results

Let H be a hexagonal system with perfect matchings. A Clar cover C of H is a span-
ning subgraph of H , each component of which is either a hexagon or an edge. Let h(C)

denote the number of hexagons of C and σ(H)= max{h(C)|C is a Clar covering ofH}.
σ(H) is called the Clar number of H . The Zhang–Zhang polynomial (or Clar covering
polynomial) [12] of H is defined as

P(H, w) =
σ(H)∑

i=0

σ(H, i)wi ,

where σ(H, i) denotes the number of Clar covers having precisely i hexagons and w

is an indeterminate or weight associated with hexagons of H .
Now we recall the concept in Clars aromatic sextet theory [4]. Let H be a benzenoid

system with Kekulé structures (perfect matching). A Clar aromatic sextet (or a sextet
pattern) of H is a set of disjoint hexagons such that the remainder of the benzenoid sys-
tem obtained by deleting the vertices of these hexagons must have a Kekulé structure
or must be empty. A set of Clar aromatic sextets is said to be a Clar formula if it has
the maximum number (i.e., the Clar number) of hexagons. Clars theory asserts that for
two benzenoid systems H1 and H2, if the Clar number of H1 is greater than that of H2,
then H1 is more stable. Since many isomers of benzenoid chains have the same Clar
number, the accuracy is not enough to order the benzenoid chains (in general) with
respect to their Clar numbers. Hosoya and Yamaguchi (see [9] and the excellent survey
in [31, p. 255]) introduced the following sextet polynomial for benzenoid systems

S(H, x) =
σ(H)∑

i=0

s(H, i)xi ,
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where s(H, i) is the number of Clar aromatic sextets of H having i hexagons and
s(H, 0) = 1.

Some basic properties of the Zhang–Zhang polynomial are the following ([4,5]):

(1) The coefficient σ(H, 0) is equal to the number of Kekulé structures, K (H);
(2) The power of P(H, w) is equal to the Clar number σ(H);
(3) The coefficient of the highest degree term, σ(H, σ (H)) equals the number of

Clar formulas of H ;
(4) σ(H, 1) = h1(H), where h1(H) = ∑

s K (H − s) is the first Herndon number
([32]) of H , the summation goes over all the hexagons of H and H − s.

3 Cyclo-polyphenacenes

The cyclo-polyphenacenes (or cyclic hexagonal chain) can be obtained by identify-
ing two edges in two end hexagons respective where each hexagon is adjacent to
exactly two hexagons. In this section we will use the lengths of its maximal linear
hexagonal chains to represent the cyclo-polyphenacenes and the graph (i.e., cyclic
hexagonal chain) corresponding to its carbon skeleton. For the sake of brevity, we do
not distinguish a cyclo-polyphenacene, its carbon skeleton and its graph.

A maximal linear hexagonal chain in a cyclic hexagonal chain C is called a segment
of C . The number of hexagons in a segment is called its length, and a cyclic hexagonal
chain can be denoted by C(r1, r2, . . . , rt ), where ri is the length of the i th segment,
2 ≤ ri ≤ n, i = 1, 2, . . . , t , n is the number of hexagons. Since any segment can be
chosen as the first, we have

C(r1, r2, . . . , rt ) ∼= C(r2, r3, . . . , rt , r1) ∼= · · · ∼= C(rt , r1, r2, . . . , rt−1).

Let C(r1, r2, . . . , rt ) be a cyclic hexagonal chain with n hexagons, then ri ≥ 2 and
r1 + r2 + · · · + rt = n + t . If t = 1, the cyclic hexagonal chain is called a linear
cyclic hexagonal chain (i.e., the carbon skeleton (graph) of a cyclo-polyacene). Just
identifying the edge b1c1 with the edge b2c2 will get it, see Fig. 1.

If r1 = r2 = · · · = rt = 2, t ≥ 3, the cyclic hexagonal chain C(2, 2, . . . , 2) is
called a zigzag cyclic hexagonal chain (a wide type of molecules including cyclo-
polyphenathrenes), see Fig. 2.

Fig. 1 A linear hexagenal chain
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Fig. 2 A zigzag cyclic hexagonal chain C(2, 2, 2, 2, 2, 2, 2, 2, ) i.e., the carbon skeleton (graph) of a
cyclo-polyphenathrene

4 The Zhang–Zhang polynomials of cyclo-polyphenacenes

In this section, we study the Zhang–Zhang polynomials of cyclo-polyphenacenes.
The following lemmas will be used in calculating the Zhang–Zhang polynomials of
cyclo-polyphenacenes.

Lemma 4.1 ([10]) Let H be a generalized hexagonal system. Assuming that xy is an
edge of a hexagon s of H which lies on the periphery of H (see Fig. 3), then

P(H) = wP(H − s) + P(H − x − y) + P(H − xy).

Lemma 4.2 ([10]) Let H be a generalized hexagonal system, and xy be an edge not
belonging to any hexagon of H (see Fig. 4), then

P(H) = P(H − x − y) + P(H − xy).

Like the cyclic hexagonal, we use L(r1, r2, . . . , rt ) denote the hexagonal chain with
t segments (i.e., maximal linear hexagonal chains) of lengths r1, r2, . . . , rt , respec-
tively. Without danger of confusion we also use L(r1, r2, . . . , rt ) denote its Zhang–
Zhang polynomial.

Lemma 4.3 ([10]) If t ≥ 2, then

L(r1, r2, . . . , rt ) = L(r1, r2, . . . , rt−1) + (rt − 1)(w + 1)L(r1, r2, . . . , rt−1 − 1)

= L(r2, r3, . . . , rt ) + (r1 − 1)(w + 1)L(r2 − 1, r3, . . . , rt ).

Fig. 3 The graph in Lemma 4.1

Fig. 4 The graph in Lemma 4.2
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Lemma 4.4 ([10]) If t ≥ 3, then

L(r1, r2, . . . , rt ) =
[
(rt − 1)w + rt − rt − 1

rt−1 − 1
(w + 1)

]
L(r1, r2, . . . , rt−1)

+ rt − 1

rt−1 − 1
(w + 1)L(r1, r2, . . . , rt−2),

where L(r1) = r1w + r1 + 1, L(r1, r2) = [(r1 − 1)w + r1][(r2 − 1)w + r2] + w + 1.

Applying the above Lemma 4.3 and Lemma 4.4, we immediately have

Corollary 4.1

L(r1, r2, . . . , rt−1 − 1) = rt−1 − 2

rt−1 − 1
L(r1, r2, . . . , rt−1)

+ 1

rt−1 − 1
L(r1, r2, . . . , rt−2).

Lemma 4.5 ([10]) For all t ≥ 3,

(i) K (L(r1, r2, . . . , rt )) =
(

rt − rt −1
rt−1−1

)
K (L(r1, r2, . . . , rt−1))

+ rt −1
rt−1−1 K (L(r1, r2, . . . , rt−2)),

with initial conditions K (L(r1)) = r1 + 1 and K (L(r1, r2)) = r1r2 + 1;

(ii) h1(L(r1, r2, . . . , rt )) =
(

rt − rt −1
rt−1−1

)
h1(L(r1, r2, . . . , rt−1)) + rt −1

rt−1−1

× h1(L(r1, r2, . . . , rt−2)) + (K (L(r1, r2, . . . , rt )) − K (L(r1, r2, . . . , rt−1))),

with initial conditions h1(L(r1)) = r1 and h1(L(r1, r2)) = 2r1r2 − r1 − r2 + 1.

4.1 The linear cyclic hexagonal chains

Theorem 4.1 Let C be a linear cyclic hexagonal chains with n hexagons, n ≥ 3. Then
P(C;w) = 4.

Proof of Theorem 4.1 By Lemmas 4.1 and 4.2,

��
From the basic properties of the Zhang–Zhang polynomial, we have

Corollary 4.2 Let C be a linear cyclic hexagonal chain, then
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Fig. 5 Two cyclic hexagonal chains

(i) the number of Kekulé structures of C is K (C) = 4;
(ii) the number of Clar formulas of C is σ(C, σ (C)) = 0, where σ(C) = 0;

(iii) the first Herndon number of C is h1(C) = 0.

4.2 The cyclic hexagonal chains with at least two segments

Let C(r1, r2, . . . , rt ) be a cyclic hexagonal chain with at least two segments (i.e.,
t ≥ 2). Then it can be obtained from the hexagonal chain L(r1 − 1, r2, . . . , rt ) by
identifying the edge b1c1 with the edge a2b2 (or c2d2), see Fig. 5.

First, we consider the non-zigzag cyclic hexagonal chain. If C(r1, r2, . . . , rt ) (t ≥
2) is not a zigzag cyclic hexagonal chain, then there exits a ri ≥ 3, 1 ≤ i ≤ t . Without
loss of generality, we always assume that rt ≥ 3.

Theorem 4.2 Let C(r1, r2, . . . , rt ) be a cyclic hexagonal chains with n hexagons and
rt ≥ 3.

(i) If t ≥ 2 is even, then

C(r1, r2, . . . , rt ) =
[
(rt − 2)w + rt − 3

rt−1 − 1
+ 1

]
L(r1 − 1, r2, . . . , rt−1)

+ (rt − 2)w + rt − 3

rt−1 − 1
L(r1 − 1, r2, . . . , rt−2)

+ 1

rt−1 − 1
[(rt−1 − 2)L(r1, r2, . . . , rt−1)

+L(r1, r2, . . . , rt−2)] + 2;

(ii) If t ≥ 2 is odd, then

C(r1, r2, . . . , rt ) =
[
(rt − 2)w + rt − 3

rt−1 − 1
+ 1

]
L(r1 − 1, r2, . . . , rt−1)

+ (rt − 2)w + rt − 3

rt−1 − 1
L(r1 − 1, r2, . . . , rt−2)
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+ 1

rt−1 − 1
[(rt−1 − 2)L(r1, r2, . . . , rt−1)

+L(r1, r2, . . . , rt−2)].

Proof of theorem 4.2 Without danger of confusion we also use c(r1, r2, . . . , rt ) denote
its Clar covering polynomial.

(i) Let t ≥ 2 is even. By Lemmas 4.1 and 4.2, where we take the second hexagon
on the last segment as the “s” of Lemma 4.1.

= wL(r1 − 1, r2, . . . , rt−1 − 1)

= wL(r1 − 1, r2, . . . , rt−1 − 1)

= wL(r1 − 1, r2, . . . , rt−1 − 1)

+[L(r1 − 1, r2, . . . , rt−1) + 1] + [L(rt − 2, r1, r2, . . . , rt−1 − 1) + 1].
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Applying Lemma 4.3, we have

L(r1 − 2, r1, r2, . . . , rt−1 − 1) = (rt − 3)(w + 1)L(r1 − 1, r2, . . . , rt−1 − 1)

+L(r1, r2, . . . , rt−1 − 1).

So,

C(r1, r2, . . . , rt ) = [(rt − 2)w + (rt − 3)]L(r1 − 1, r2, . . . , rt−1 − 1)

+L(r1 − 1, r2, . . . , rt−1) + L(r1, r2, . . . , rt−1 − 1) + 2.

Combining the above equation with Corollary 4.1, we obtain the recurrence relation:

C(r1, r2, . . . , rt ) =
[
(rt − 2)w + rt − 3

rt−1 − 1
+ 1

]
L(r1 − 1, r2, . . . , rt−1)

+ (rt − 2)w + rt − 3

rt−1 − 1
L(r1 − 1, r2, . . . , rt−2)

+ 1

rt−1 − 1
[(rt−1 − 2)L(r1, r2, . . . , rt−1)

+L(r1, r2, . . . , rt−2)] + 2.

(ii) Let t ≥ 2 is odd. Calculating as in the case (i), we have
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= wL(r1 − 1, r2, . . . , rt−1 − 1) + L(r1 − 1, r2, . . . , rt−1)

+L(rt − 2, r1, r2, . . . , rt−1 − 1).

Using Lemma 4.3, we can get the recurrence relation:

C(r1, r2, . . . , rt ) =
[
(rt − 2)w + rt − 3

rt−1 − 1
+ 1

]
L(r1 − 1, r2, . . . , rt−1)

+ (rt − 2)w + rt − 3

rt−1 − 1
L(r1 − 1, r2, . . . , rt−2)

+ 1

rt−1 − 1
[(rt−1 − 2)L(r1, r2, . . . , rt−1) + L(r1, r2, . . . , rt−2)].

The proof of the theorem is completed. ��
Combining the basic properties of the Zhang–Zhang polynomial with Theorem 4.2,

we have the following recurrence relations of the number of Kekulé structures and the
number of the first Herndon number of cyclic hexagonal chains.

Corollary 4.3 Let t ≥ 2,rt ≥ 3,

(i) If t is even, then

K (C(r1, r2, . . . , rt )) =
(

rt − 3

rt−1 − 1
+ 1

)
K (L(r1 − 1, r2, . . . , rt−1))

+ rt − 3

rt−1 − 1
K (L(r1 − 1, r2, . . . , rt−2))

+ 1

rt−1 − 1
K (L(r1, r2, . . . , rt−1))

+K (L(r1, r2, . . . , rt−2)) + 2;

(ii) If t is odd, then

K (C(r1, r2, . . . , rt )) =
(

rt − 3

rt−1 − 1
+ 1

)
K (L(r1 − 1, r2, . . . , rt−1))

+ rt − 3

rt−1 − 1
K (L(r1 − 1, r2, . . . , r−2))

+ 1

rt−1 − 1
K (L(r1, r2, . . . , rt−1))

+K (L(r1, r2, . . . , rt−2)),

where K (L(r1, r2, . . . , rt )) satisfy the recurrence relations of Lemma 4.5.
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Fig. 6 A coronoid

Corollary 4.4 . Let t ≥ 2, rt ≥ 3, then

h1(C(r1, r2, . . . , rt )) = rt − 2

rt−1 − 1
[K (L(r1 − 1, r2, . . . , rt−1))

+K (L(r1 − 1, r2, . . . , rn−2))]
+

(
rt − 3

rt−1 − 1
+ 1

)
h1(L(r1 − 1, r2, . . . , rt−1))

+ rt − 3

rt−1 − 1
h1(L(r1 − 1, r2, . . . , rt−2))

+ 1

rt−1 − 1
[(rt−1 − 2)h1(L(r1, r2, . . . , rt−1))

+h1(L(r1, r2, . . . , rt−2))],

where h1(L(r1, r2, . . . , rt )) satisfy the recurrence relations of Lemma 4.5.

For example, the graph C(3, 3, 3, 3, 3, 3) in Fig. 6 is a a coronoid (see [33, p. 180]).
By Theorem 4.2, the Zhang–Zhang polynomial of the coronoid C(3, 3, 3, 3, 3, 3)

is

P(C(3, 3, 3, 3, 3, 3);w) =
[w

2
+ 1

]
L(2, 3, 3, 3, 3) + w

2
L(2, 3, 3, 3)

+1

2
[L(3, 3, 3, 3, 3) + L(3, 3, 3, 3)] + 2

= w6 + 18w5 + 123w4 + 408w3 + 699w2 + 594w + 200.

The number of Kekulé is 200, which is consistent with the result enumerated by the
two-step fragmentation method in [33].

Next, we consider the zigzag cyclic hexagonal chain C(2, 2, . . . , 2) with t ≥ 3
segments.

Let ft denote the Zhang–Zhang polynomial of zigzag hexagonal chain
L(2, 2, . . . , 2) with t ≥ 3 segments. Zhang and Zhang [10] obtained the follow-
ing result:
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Lemma 4.6 ([10]) Let t ≥ 3, then

ft = (2w + 3)
∑

k1+2k2=t−1

(
k1 + k2

k1

)
(1 + w)k2

+(w2 + 3w + 2)
∑

k1+2k2=t−2

(
k1 + k2

k1

)
(1 + w)k2 .

In the following, we give the recurrence relations of the Zhang–Zhang polynomial of
a zigzag cyclic hexagonal chain C(2, 2, . . . , 2).

Theorem 4.3 Let C(2, 2, . . . , 2) be a zigzag cyclic hexagonal chain with t ≥ 3 seg-
ments,

(i) If t > 6 is even, then C(2, 2, . . . , 2) = (w + 1) ft−4 + ft−2 + 2;
(ii) If t > 6 is odd, then C(2, 2, . . . , 2) = (w + 1) ft−4 + ft−2;

(iii) C(2, 2, 2) = 3w + 4; C(2, 2, 2, 2) = 2w2 + 8w + 9; C(2, 2, 2, 2, 2) = 5w2 +
15w + 11; C(2, 2, 2, 2, 2, 2) = 2w3 + 15w2 + 30w + 20.

Proof of theorem 4.3

(i) Let t > 6 is even. By Lemmas 4.1 and 4.2, where we take the first hexagon on
the (t − 1) − th segment as “s”of Lemma 4.1.

= w ft−4 + [ ft−4 + 1] + [ ft−2 + 1]
= (w + 1) ft−4 + ft−2 + 2.
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(ii) Similarly,

= w ft−4 + ft−4 + ft−2 = (w + 1) ft−4 + ft−2.

(iii) It can be obtained by calculating immediately.

��
Combining the above result and Lemma 4.6, we have

Corollary 4.5 Let C = C(2, 2, . . . , 2) be a zigzag cyclic hexagonal chain with t > 6
segments,

(i) If t is even, then

P(C;w) = (w3 + 4w2 + 5w + 2)
∑

k1+2k2=t−6

(
k1 + k2

k1

)
(1 + w)k2

+(2w2 + 5w + 3)
∑

k1+2k2=t−5

(
k1 + k2

k1

)
(1 + w)k2

+(w2 + 3w + 2)
∑

k1+2k2=t−4

(
k1 + k2

k1

)
(1 + w)k2

+(2w + 3)
∑

k1+2k2=t−3

(
k1 + k2

k1

)
(1 + w)k2 + 2;
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(ii) If t is odd, then

P(C;w) = (w3 + 4w2 + 5w + 2)
∑

k1+2k2=t−6

(
k1 + k2

k1

)
(1 + w)k2

+(2w2 + 5w + 3)
∑

k1+2k2=t−5

(
k1 + k2

k1

)
(1 + w)k2

+(w2 + 3w + 2)
∑

k1+2k2=t−4

(
k1 + k2

k1

)
(1 + w)k2

+(2w + 3)
∑

k1+2k2=t−3

(
k1 + k2

k1

)
(1 + w)k2 .

By the basic properties of the Zhang–Zhang polynomial of C(2, 2, . . . , 2), we can
easily derive the following Corollaries 4.6–4.8 from the above theorem.

Corollary 4.6 Let C(2, 2, . . . , 2) be a zigzag cyclic hexagonal chain with t ≥ 3
segments,

(i) If t > 6 is even, then

K (C(2, 2, . . . , 2)) = 2
∑

k1+2k2=t−6

(
k1 + k2

k1

)
+ 3

∑

k1+2k2=t−5

(
k1 + k2

k1

)

+2
∑

k1+2k2=t−4

(
k1 + k2

k1

)
+ 3

∑

k1+2k2=t−3

(
k1 + k2

k1

)
+ 2;

(ii) If t > 6 is odd,

K (C(2, 2, . . . , 2)) = 2
∑

k1+2k2=t−6

(
k1 + k2

k1

)
+ 3

∑

k1+2k2=t−5

(
k1 + k2

k1

)

+2
∑

k1+2k2=t−4

(
k1 + k2

k1

)
+ 3

∑

k1+2k2=t−3

(
k1 + k2

k1

)
;

(iii) K (C(2, 2, 2)) = 4; K (C(2, 2, 2, 2)) = 9; K (C(2, 2, 2, 2, 2)) = 11;
K (C(2, 2, 2, 2, 2, 2)) = 20.

Corollary 4.7 Let C(2, 2, . . . , 2) be a zigzag cyclic hexagonal chain with t ≥ 3 seg-
ments,

123



J Math Chem (2009) 46:347–362 361

(i) If t > 6,then

h1(C(2, 2, . . . , 2)) =
∑

k1+2k2=t−6

(5 + 2k2)

(
k1 + k2

k1

)

+
∑

k1+2k2=t−5

(5 + 3k2)

(
k1 + k2

k1

)

+
∑

k1+2k2=t−4

(3 + 2k2)

(
k1 + k2

k1

)

+
∑

k1+2k2=t−3

(2 + 3k2)

(
k1 + k2

k1

)
;

(ii) h1(C(2, 2, 2)) = 3; h1(C(2, 2, 2, 2)) = 8; h1(C(2, 2, 2, 2, 2)) = 15;
h1(C(2, 2, 2, 2, 2, 2)) = 30.

Corollary 4.8 Let C(2, 2, . . . , 2) be a zigzag cyclic hexagonal chain with t ≥ 3
segments,

(i) If t is even, then σ(C(2, 2, . . . , 2)) = t
2 ; σ

(
C(2, 2, . . . , 2), t

2

) = 2;
(i) If t is odd, then σ(C(2, 2, . . . , 2)) = t−1

2 ; σ
(
C(2, 2, . . . , 2), t−1

2

) = t .
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7. M. Randić, S. El-Basil, Graph theoretical analysis of large benzenoid hydrocarbons. J. Mol. Struct.

(Theochem) 304, 233–245 (1994)
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